Table of Contents

1. Mjolnir

1.1 Cascading File System
1.1.1 Modules

1.1.2 Loading Classes

1.1.3 Loading Files

1.1.4 Loading Configuration Files
1.1.5 Composer Integration
1.1.6 Overwriting Classes
1.1.7 Overwriting Behaviour in Classes
1.1.8 Overwriting Configuration Entries
1.1.9 Overwriting Files

1.2 Introductory Tutorial

1.2.1 Basic Structure

1.2.2 Installing Dependencies
1.2.3 Private and Public Files
1.2.4 Accessing the Backend
1.2.5 Routing, Controllers, etc
1.2.6 Creating an API

1.2.7 Upgrading

1.3 Types

1.3.1 Type Traits

1.3.2 Generic Types

1.3.3 Caching Types
1.3.4HTML Types

1.3.5 Database Types

1.3.6 Application Types

1.3.7 View Types

1.3.8 Theme Types

1.3.9 Miscellaneous Types
1.4 Foundation Classes

1.5 Base Classes

1.6 Profiling

1.7 HTML Utilities

1.8 Access System

1.9 Cache Classes
1.10 Backend System
1.11 Themes

1.12 Documentation
1.13 Database Classes

M| olnir

--install -Dbi gger - hamrer

DISCLAIMER: The following documentation iswork in progress and has yet to be properly formatted, proof
read, or completed. It is provided as-iseven in it's current state so that it may be of use, aswell as for internal
devel opment purposes.

Mjolnir, pronounced "mee-uhl-neer”, is an all purpose PHP module-based library (can also be considered a
framework) primarily aimed for web development but adept at any task otherwise possible though PHP. Based
on a (PSR-0 compatible) cascading modular class and file system, PHP traits and convention though interfaces,
the library is designed to mold itself to your use case. The main design goals are, in order:

e maintainable code

flexible infrastructure
reusability

e security

ease of use & smplicity

e easy integration with other tools

In Mjolnir all classes, methods, variables, and values are replaceable, overwritable, customizable, extendable,
and discardable. If it exists, it exists to be given a purpose, not as a requirement. Files, user interaction,
execution, request patterns, project structure, are all designed to allow for interpretation in the context of the
problem at hand.

Thelibrary is based on PHP, because PHP facilitates the libraries technical requirements via class autol oading,
among other features.

The modules are designed around up to date PHP. At thistime PHP 5.4.4 and above is required. Using the latest
version is highly recommended. New notable and useful features in the the language will be adopted as soon as
possible.

All documentation is created to be human readable, is part of the codebase, and integral part of the release
process. As per the release philosophy a version can not be stable with out complete documentation. There are
no API docs, since its usefulness is debatable; to conservetimeit isignored. All code has been written to be
readable by itself, various docblock patterns have still been used to the extend that is useful for editor
autocompletion and other tooling. Even though doc-style comments are almost intentionally omitted the code is
still commented extensively; in place of machine language, paragraphs and examples are written in plain english
and detail.

For understanding how the library works, and how to use it effectively, it is recommended to start with the
cascading file system module; and continue to the base module. Other modules are all contextual in nature, so
after understanding how the module system works feel free to skip to any point of interest to your own projects.
Extensive functional examples are provided as often as possible.

1.1 Cascading File System

The Cascading File System (cfs for short) module allows the implementation of projects based on a modular
pattern where points of interest in an application are split into modules (separate directories with a namespace)
and stacked in order of priority, with top modules taking precedence over lower modules. The modules are built
on a PSR-0 compliant structure and fully support namespaces.

If properly applied, al classes, files, and configurations on the application become easily overwritable and
customizable.

The system is compatible with dependency injection but for most cases dependency injection overlaps with the
module system in purpose. Modules will solve roughly the same problems with less hassle, less code, and more
intuitive patterns.

This moduleis part of Mjdlnir, but may be used on it's own for creating projects, frameworks, etc. Its only
foreign dependency isto thenj ol ni r\ t ypes namespace (a pure interface module), where it retrieves type
information for caching and database binding methods (both functionally optional features).

nj ol ni r\testingisasoused by thismodule, but only for behavior tests; we recommend running testsin a
typical mjolnir setup so this should not be a concern for anyone who wishes to use only this module.

For creating an application based on this module, but not on mjolnir as a whole the mjolnir-template-app can
till be used as a guide. Note that all the structure is merely a recommendation.

If you wish to create your own version based on this module but keep most of it you can include this module as
a dependency to your project and create another class which extends it via composer. Y ou will have to extent
\ nj ol ni r\ cf s\ CFSinyour new class.

For versioning information and methodology see https:.//github.com/ibidem/ibi dem/blob/master/versioning.md

https://github.com/ibidem/mjolnir-template-app
https://github.com/ibidem/ibidem/blob/master/versioning.md

1.1.1 Modules

In acascading file system, modules are the foundation blocks for everything within the system. Without
modul es the systems can not function.

A module can contain the following,

1. Classes

2. Configuration Files

3. Files, such as Views, Themes, Vendor/3rd-party code, etc

4. Anything else ("if it fits, it's okey", eg. documentation, drafts, etc)

Classes and configuration files are the first class citizens in amodule. The entire module structure is designed
around classes, and configuration files are merged together, which is different to other files (including classes).

Assuming default structure is used, a module works as follows:

1. al filesare located in directories (on the module root) prefixed with a"'+"
2. dl configuration files and (files known by the loading process) are stored in the main application files
directory (by default "+App"), any other directories (eg. "+Docs") are not available in the file system.

Under normal conventions

Configuration files are stored in +App/ conf i g
View files are stored in +App/ vi ews
Themefiles are stored in +App/ t henes
Draftsare stored in +App/ draft s

Vendor files are stored in +App/ vendor
Internationalization/grammar files are stored in +App/ | ang
Functions are stored in +App/ f unct i ons
Specia classes are stored in +App/ i ncl udes
Behavior tests are stored in +App/ f eat ur es
Unit tests are stored in +App/ t est s

. Special temporary files are stored in +App/ t np

© oo N Uk~ wWDNPE

el
= o

Note: ThetApp/ honeypot . php filesare designed to be read by your IDE to facilitate autocompletion,
refactoring, etc; they serve no other purpose and the only time you should be opening themis when your IDE is
failing to scan them.

To get started with a base structure go to: https://github.com/ibidem/mjol nir-template-app and follow the
instructions outlined in the READMVE. nd file (github should offer you a parsed version at the given link).

https://github.com/ibidem/mjolnir-template-app

1.1.2 L oading Classes

For aclass (from aregistered module) to be loadable the following conditions must be met.

1. The module in which the class s present must be known by the autol oader; meaning, when using the
recommended structure you must specify it in your envi r onnent . php file. If you are relying on anon-
default structure this condition resumesto: it must be included by CFS: : nodul es,

CFS:. : front nodul es, CFS: : backnodul es, or for namespace only access
CFS: : nanespacepat hs.

2. If underscores within the class name are replaced with directory separators specific to the system, the
class should result in avalid path segment and in combination with the path to the module itself and the
current extention (defined by the current value of EXT) should produce avalid path to the classfile.
Confused? Let's say we have the example class Cont r ol | er _Acne(Or gani zat i on the correct path
toit if MODULE isthe path to the module, and EXT is. php is
MODULE/ Cont rol | er/ AcmeOr gani zat i on. php. If theclassis placed in any other fileit will not
be recognized.

3. The full namespace of the class should correspond (exactly) to the namespace defined for the module. So
as an example, the\ nj ol ni r\ access\ ReCapt cha classresidesintheaccess module, which has
the namespace nj ol ni r\ access.

4. Another file with the same path segment pattern (ie. same class name) is not available in a higher module
(this DOES NOT apply to namespace invocation; discussed bellow)

If al conditions are met the class will be loaded. Otherwise it will be passed on to any other autoloader on the
system (eg. bridges to other module systems, composer's autol oader, €tc).

Let'stake an example,

<?php namespace acne\security\access;
MODULE/ Control | er/ AcneQrgani zati on. php
class Controller_AcneOr gnai zation

{
...
} # class
We can call this classin anumber of ways. First we can call it by namespace:

\acne\ security\access\ Controll er _AcneOrgnai zati on

If al elsefailsthis method will aways work assuming you have composer setup correctly, since all modules are
PSR-0 compliant.

If we say don't carewhat Cont r ol | er _AcnmeOr gani zati onitisinacne\ security wecansmply call
it by:
\acne\security\ Controll er _AcnmeOr gani zati on

Similarly, if we don't care for the security segment, we can call:

\acne\ Control |l er _AcrmeOr gani zati on
There are however three conditions to this shorthand namespace resol ution:

1. the full namespace must be a namespace known to the cascading file system; namespaces only known via
composer will not resolve.

2. you may only omit entire segments at atime; so\ acne\ sec\ Control | er _AcnmeOr gnai zat i on
(note: "sec" instead of "security") will not resolve to our example class.

3. the namespace you are using as a shorthand must not be registered in the cascading file system. Thisis
purely by design to prevent false positives. If the namespace is registered and the class is not within it
then the classwill NOT resolve. This behaviour is aso intended to avoid confusion.

When extending any classin mjolnir it is recommended (and expected) you use the shorthand j ol ni r
namespace; so if we had aclassnj ol ni r\ exanpl e\ Hel | o we expect you to use:

class Hello extends \mjolnir\Hello
Instead of thisform:
class Hello extends \molnir\exanple\Hello

Thisalows usto (if needed) movetheHel | o classtonj ol ni r\'| egacy with out breaking your code.
Remember thistype of loading only works on registered namespaces and not namespaces available via
COMPOSEY.

Thelast (and most common) way of resolving the class is viathe special app namespace, ie.

\app\ Control |l er _AcneQOrgnai zation

When we resolve a class viathe app namespace we are always asking for the most advanced implementation of
said class; which simply boils down to which namespace holding such aclassis at the top of the stack in your
module declarations (or as aresult of your your module declarations; depending on your setup). In Mjolnir
every use of every classisviathe app namespace so by creating atop level classin your application you can
replace and/or customize any class in the system.

The only direct dependencies to the library files are the interfaces which have been used with explicit
namespaces to discourage bad patterns, and encourage consistency (more on thisin the types section).

Namespaces must be unique

Each module may have one namespace, and that namespace you choose must be unique.

The namespace must be unique both in the project, and the world. The namespace must not appear anywhere
else, on anything other then this module, even if the place it appears on is a project that does not rely on the
class loading system described here. If it is PHP code, or can interchange calls with PHP code, it isaninvalid
namespace, because it fails to be unique.

To understand why, you have to first understand what problems namespaces solve, and how they solve them.
The are three main problems:

1. name conflicts with other peoples code
2. name conflicts with your old code
3. name conflicts with your yet to be written code

Let's consider the earlier example\ acne\ securi ty\access\ Control |l er _AcnmeOrgani zati on asa
benchmark. The first part of the namespace (ie. acne) solvesthefirst problem: it is unique and can act asa
“family" name for the rest of the code. One can thus safely write any function or class within it with out fear of
it conflicting to one in another unknown library, framework, plugin, etc.

Eventually as the code family grows out we start having problems of managing name conflicts within it. We can
avoid confusion by creating a smaller namespace within it. Since the acme namespace is a blank slate we can
choose this time from common words, so we get the added benefit of organizing our code better at the same
time, which solves the second problem "name conflicts with your old stuff".

When we grow past this point we can continue to add segments as a means of separating concerns, so when
multiple modules are being created simulataniously with potentially conflicting class names the code stays safe
from potentia reuse of names (ie. there could be a

\acne\ security\protocol s\ Controll er_ AcmeO gani zati on) by working in the

acne\ security\ access namespace we don't have to care, thus achieving point three in our initia
problems list, future proofing.

Following the above, here are some patterns to avoid.

Namespaces as extentions of the classname, ie.\ acne\ Control | er\ Organi zat i on. Thisisvery
impractical, and mostly abused for purely pointless sugarcoding purposes. If Cont r ol | er there establishesa
sub space and Or gani zat i on isacontroller, then what is a controller in a namespace other then

Control | er inthe same acne namespace, other then confusing? In addition, if all controllers are meant to
gointothisCont r ol | er namespace how can you have another Or gani zat i on controller? The answer is
"you can't", neither can you for practical applications but also mistakenly creating a class with the name

Or gani zat i on iserrornous and means you have to be aware of problems 2 & 3 outlined above by yourself,
rather then the namespace resolving it for you (as it should). If that was not enough one has to also consider how
the classes are completely incorrect with this pattern: an Or gani zat i on class might act the function but it is

not very intuitive and nobody will understand it asaCont r ol | er _Or gani zat i on outside the namespace
context.

Namespaces should act as a "name space” first, anything else third, so we recommend avoiding these
"beautification" patterns.

Incidentally, theapp namespace is actually a valid namespace. Even though it doesn't follow the exact
recommendation above, it does meet the requirements due to how it functions: all classesin it are unique at
runtime.

1.1.3 Loading Files

There are afew waysto load files known by the system. The first way, which is the most convenient for single
files, istouseCFS: : fil e($fil e, $ext = EXT) thiswill search al modulesfrom top to bottom and
stop when it finds afile; so it will give you the top file in the modul e stack.

Another way to load filesisto load afile viaits directory; thisis mostly done with vendor/3rd-party code since
we want some gurantee we're getting the right " config.php" and we don't really care for the file itself per se as
much as we do about getting it from the correct directory. The method for thisisCFS: : di r ($di rect ory)
and a simple use case example would look like this:

require_once \app\CFS: :dir (' vendor/awesonesonet hing').' mai ncl ass.inc';

If we need al thefiles of thegivennameweuseCFS: : file list($file, $ext = EXT) which
functions amost the sasmeway as CFS: : f i | e only instead of the top file we'll get back and array of all the
matching files.

If we need to have a more sophisticated search, wecanuse CFS: : find_fil es($pattern, array
$contexts = null, array & $matches = []). Thisfunction can be used even outside the context
of the cascading file system by simply providing different contextsin it (in the absence of any contexts, it will
default to searching all registered file paths).

A different way to get to filesis by retrieving the path and doing your own handling. Y ou can get the path to the
module'sroot viaCFS: : nodul epat h($nanmespace) (or the practically equivalent method for standard
modules CFS: : cl asspat h($namespace)), and thefile path viaCFS: : fi | epat h($nanespace) .

1.1.4 Loading Configuration Files

To load a configuration "file" the function CFS: : confi g($key, $ext = EXT) isused. Incertain
extreme cases you may want to explicitly make sure the configuration you are loading is coming from a
physical file (and not something else, such as a database) in which case you would use

CFS: :configfil e($key, $ext = EXT).

By default configuration files are mere PHP files which return an array. If required a configuration file may be
externally loaded via an include as follows:

$config = include 'path/to/configuration.php';

This however will rarely be equivalent to the result of CFS: confi g(' pat h/t o/ confi gurati on') due
to how configurations are managed.

In the cascading file system the values for a configuration file is obtained as follows.

1. the system will search for al configuration filesin all modules; more specifically the search will match
the given pattern to +App/ conf i g of all modules, and just conf i g for any explicit paths (such as
private files).

2. theresulting arrays will be recursively merged starting from the values obtained from the bottom modules
and going up. So values you place in top modules will always overwrite valuesin lower modules.

3. if no configuration files were present an empty array is returned

So the value of a single configuration file is not necessarily representative of the complete result.

Typically you will place defaults in the module which implements the configuration and overwrite as needed in
the modules that use the configured implementation.

Because configuration files are plain old PHP code, you can have any amount of complexity in it. Here are just
afew examples:

Y ou can generate a configuration dynamically; for example if www path is not defined you may attempt to
resolve the configuration to some other more useful value; remember that the configuration files are still plain
old PHP files so there is very little limitation on what processing they can do.

Y ou can split the configuration into a series of arrays and simply return the merged output; for examplein the
case of a script configuration, you can form small manageable arrays with points of interest (form helpers,
modals, etc) then merge them and remove duplicates. Y ou thus avoid having monolithic declarations, have an
easy mechanism to dealing with script duplication, and best of al: it's far more maintainable.

Y ou can use variables for cleaner syntax; for example in routing, with the exception of certain abstract patterns,
you often have to define various repeating patterns for said routes, you can use variablesto avoid this, which is

extremely useful when dealing with 40+ routes (asis the case alot of the time). Example:

<?php

/1l segnents

$id=1["id =>"'[0-9]+];

$slug = ['slug' => '[a-z0-9-]1+"];

/1 mXxins

$resource = '<id>/<slug>(/<action>)";
/] access

$control = ['GET, 'POST'];

return array

(

"/ exanpl e/ { $r esour ce} "
=> ['exanple', $id + $slug + ['action' => '(insert)'], $control],

)

Y ou can place closures within configuration files allowing you to create a dynamic collection of them for easy
management. For example url generators, such as athumbnail or action urls for forms, a closure for generating
the correct path for a given filename saves space and is very flexible.

Y ou can trandlate the configuration from an external 3rd party source directly in the configuration file and
output it; thismeans that if the source configuration is updated your configuration is updates as well; which is
useful for capturing changes to defaults or extra options that become available; this may be ajson, yaml, another
php file, etc, or if necessary the application might even resort to going to the web to get updates (eg. list of
countries, cities, etc), regardless of format, or changes in the format, when you need the configuration you
merely perform a standard call.

Configuration files are resolved once. Any subsequent callstoCFS: : conf i g with the same parameters merely
resultsin the previous (cached) result. This means you can abuse calls, but it also means you should treat
values from configuration files as static. A "timer" value will not update for example; but you can always use a
closure within the configuration for those cases.

If you wish to cache the resolved configuration file between requests you can add a @ f s key to the
configuration file which will be read by the system post merge and settings parsed. By passing cachable the
system will be instructed to persist the configuration values between requests. The values must be serializable
for the values to be persisted so if your configuration has functions defined avoid making the configuration
cachable.

Example configuration using @f s,

<?php return array

(

'@fs' => array

(

'cachabl e’ => true,

) ’
"exanmple' => 12,
); #config

Accessing the configuration will return|[' exanpl e’ => 12] inthiscase.
If you need the @f s key, smply writeit as\ @f s.

Please DO NOT store security keys, passwords and other sensitive information in configuration files located in
your source repositories. Not only isit asecurity liability, but it isalso apain for any development outside your
production server (unless all your test servers, along with every site you ever built somehow has the same keys;
which would be nonsensical).

The correct way of dealing with sensitive configuration entries isto place them in a separate file path that sits at
the top of the cascading file system and outside your DOCROOT. The mjolnir-template-app shows an example of
this: you specify the path to the private filesviaapri vat e. fi | es entry in WNWAPATH confi g. php anda
DOCROOT/ . key. pat h filefor CLI access. The DOCROOT/ . key. pat h isignored viayour . gi ti gnor e
and merely contains a path.

1.1.5 Composer Integration

First of all you may load and use any composer compatible projects. It is not recommended to configure them as
modules; they should be used via the namespace resolution only (so that they are handled by composer only).

Modules, as previously described, are PSR-0 compatible, so aslong as there are no major dependencies to the
cascading file system, they may be loaded directly via composer and used like a regular composer package.

If acomposer based class would serve better as a class within the cascading file system, the recommended way
of integrating it, assuming it was not designed to be used in this context to begin with, isto construct a wrapper
and extend it. Thisis also the case for any embeded code within the module.

Ideally modules will define any dependencies viatheir conposer . j son file, which assuming the moduleis
itself loaded via composer results in said dependencies being transparently pulled in and updated asis the case.

https://github.com/ibidem/mjolnir-template-app.git

1.1.6 Overwriting Classes

To overwrite aclassit's very simple: you just create a classin a higher level module.

For example, let's say your et ¢/ envi r onnent . php defines the following modules:

$nodpat h. ' nodul el' => ' deno\ nodul el',
$nodpat h. ' nodul e2' => ' deno\ nodul e2',
$nodpat h. ' nodul e3' => ' denp\ nodul e3',

In this configuration modul el has the highest priority and mnodul e3 has the lowest priority. Or if we go by
namespace we can say deno\ nodul el isconfigured to be of higher priority then deno\ nodul e2 whichis
of higher priority then deno\ nodul e3.

Lets say we have aclass denp\ nodul e3\ Exanpl e aready defined. When we access\ app\ Exanpl e the
system will resolve the class to the highest priority module and since it can not find the class in modulel and
can't find the class in module2, the module3 version of the class will get loaded.

If we define aclassdeno\ nodul el\ Exanpl e however, sinceit'sin amodule of higher priority when we
cal \ app\ Exanpl e well actually get the modulel version now instead of the module3 version.

That'sal thereistoit.

Remember that the system may cache paths for fast resolution so if you're testing and getting the wrong version
justrunaorder cl eanup to flush out the caches.

1.1.7 Overwriting Behaviour in Classes

We've talked about how to replace a class, but often times what you really want isto replace functionality in a
class rather then re-write the entire class.

To start with you'll first need to overwrite the class. For the sake of our example we'll assume our classis
Exanpl e aswith the previous section, and we're overwriting the class deno\ nodul e3\ Exanpl e with
deno\ nodul el\ Exanpl e.

If you replace the entire class your deno\ nodul el\ Exanpl e classwill likely look something like this:

<?php namespace deno\ nodul el;
cl ass Exanpl e
{

/1 enpty

} # class

Functional (sort of) but we've just thrown away all the functionality of the previous class. So lets say we don't
want to do that.

The first way we can pull functionality from the previous class back in is by extending the other class directly.
While we generally refer to classes though the magic app namespace, we can also write the full namespace, so
writing the following will pull in the previous class into our class:

<?php namespace deno\ nodul el;
cl ass Exanpl e ext ends \deno\ nodul e3\ Exanpl e

{
/1 enpty
} # class

Thisworks but is alittle inflexible. If say we were making a module and did this then we have just said "our
module needs to be the highest priority module that extends the Example class' and "only our module can
extend the Example class,” more or less (a module with knowledge of our module can circumvent this limitation
at the expense of it being unusable outside use with our module so fat chance of that ever happening). So now
lets do better:

<?php nanespace deno\ nodul el;
cl ass Exanpl e extends next\Exanpl e

{
[l enmpty
} # class

Pay close attention to the syntax, it'sNOT \ next \ Exanpl e it'snext \ Exanpl e, ie. no slash before the
specia next keyword. Now we don't have any of the previous problems. What we've done is tell the system we
want to extend the Example class that's next in line in module priority. So let's say we had three modules
(modulel, module2, module3, in that order) with three copies of the Exanpl e class (with obviously namespace
on changed accordingly, and no ext ends directive in the module3 version), when we access\ app\ Exanpl e
we would get the class\ deno\ nodul el\ Exanpl e (sinceit's of the highest priority) then have it extend

\ deno\ nodul e2\ Exanpl e sincedueto next \ Exanpl e resolving to the next in line, then have that itself
extend \ deno\ nodul e3\ Exanpl e for the same reason. If we swaped our module2 with modulel in the
modules section of our et ¢/ envi r onnent . php filewe would then get \ deno\ nodul e2\ Exanpl e
extending \ deno\ nodul el\ Exanpl e extending\ deno\ nodul e3\ Exanpl e with out making any file
changes.

The last way to extend the classis though partial namespace resolution, thisis useful sometimes but generally
you'll want to use next \ Cl ass unlessyou have arealy good reason to be specific. The way partial
namespace resol ution works is since when extending a class you're generally only interested in the class and not
the namespace segments of the class (other then the main one) you can just extend a class with the main
segment. So take the class\ nj ol ni r\ access\ User you can write:

<?php nanmespace deno\ nodul el;
cl ass Exanpl e extends \njol nir\access\ User

{
[l empty

} # class

Or, you can omit the module namespace segments and just write:

<?php namespace deno\ nodul el
cl ass Exanpl e extends \njol nir\User

{
/[l enpty
} # class

This makes your class alittle bit more robust, if User is moved to a different namespace your code will still
work, but unless you really need to be specific you're better off with the next \ C ass method.

1.1.8 Overwriting Configuration Entries

Unlike classes configuration files don't overwrite each other, but instead merge into each other. Associative
arrays will get keys replaced by keysin modules with higher priority, non-associative key arrays will get values
combined.

Hereis abasic example. Given the following,

<?php return array # in nodul el

(

‘color' => 'red',

"people’ => 1 '"John' =>"'Plumrer'],
"letters' == ['a', 'b'", "¢],
); # config

And the following:

<?php return array # in nodul e2
(
"date' => 'today'
"color' =>"blue'
"people’ =>] 'John' => 'Carpenter', 'Anna' =>"'Wtch'],
"letters' =>['d, 'e, "f'],
); # config

When we read the configuration in question we'll get:

<?php return array
(
"date' => 'today'
"color' => 'red",
"people’ => ['John' =>'"Plumer', 'Anna' => 'Wtch'],
"letters’ =>7['a, '"b", 'c', 'd, "e, "f'],

); # config

Higher priority overwrites lower priority.

1.1.9 Overwriting Files

To overwrite files ssmple place another file with the same name in a higher priority module.

When dealing with vendor filesit's usually a good ideato place them in adirectory vendor inside the +App
folder (ie. general filesfolder), in their own folder then use\ app\ CFS: : di r to pull themin.

require_once \app\CFS::dir('vendor/the_vendor').' mai n_cl ass. php';

The reason for doing thisis so you can overwrite the folder instead of the file though in the case of most
vendors dependencies that |oad everything manually you'll get semi-equivalent results if searching for the file or
searching for the folder then append the file like above.

1.2 Introductory Tutorial

In the following section we'll cover creating a basic application. Thisis the fastest way to get up and running,
but if you wish you may skip the section and go into specific sections. If you wish to have a good technical
understanding on types used you may skip all the way to the types section which explains al typesin the system.

In the following tutorial some of the paths may be changed for easier development; for correctness server
optimal structureisillustrated.

For clarity we are going to assume ~/ Www points to your server's public directory. We're al'so going to assume
we are creating our project in ~/ deno and the project is called "Demao" and our root namespace for the project
is"demo." Replace paths with your own and feel free to replace names with your own aswell. We'll use ~ for
home directory paths but in cases where the path needs to be absolute we'll assume ~ to be

/ horre/ sit e_user/.Weareaso going to assume development is done on localhost, so the domain in
question for our demois127. 0. 0. 1 (note: there are complications with using the | ocal host variantin
some browsers; the choice hereis not just personal preference).

In the tutorial we will cover all commands and details on what's happening. Keep in mind that the time to
complete the tutorial (ie. read, copy commands, etc) is not representative of the time it will take you to repeat it
on areal project from scratch. We will also illustrate how to perform some basic troubleshooting and cover
errors you might encounter which will add several "dead steps” to the process; we find it important you be
aware how to not get bogged down, but these also add significant time to the process.

For the sake of brevity we will assume you are familiar with PHP and gi t and will only cover what we
consider potentially non-intuitive details.

For the purpose of thistutoria you should have the following installed on your development machine: git, PHP
(with console access), Ruby (1.9.x generally), Sass(gem i nstal | sass), Ruby Zip(gem i nst al |
r ubyzi p), java (used for compiling javascript with google's closure compiler), a server

On windows we recommend using git bash for the tutorials, it will give you access to a unix style command line
and tools. Recommended servers on windows are Uniform Server, EasyPHP. nginx based stacks are available
but we'll be assuming apache servers for smplicity sake.

1.2.1 Basic Structure

git clone https://github.comibideninjolnir-tenplate-app.git ~/deno/0.1.x
cd ~/denp/0. 1. x

git checkout nj/2.x/blank

git renote renane origin njolnir

git renmote add origin YOUR PROJECT URL. git

git checkout -b devel opnent

We generally recommend the following branch structure:

e producti on - self explanatory, whatever isin production is"aways ready to be pulled in alive
version," so avoid direct work on it outside of merges

e devel opnent - integration branch for unstable features

e fi xes - very minor changes that don't require special "feature branches" or too much testing; for
example: style fixes, typos, single-line fixes, formatting, very minor bugs, etc

e misc feature branches for anything significant; when branches are merged into development remove them

Infi xes you should only pull changes from production. All feature branches should merge into devel opment
for integration (never into production directly). Everything can pull fromf i xes and pr oduct i on.
Development is merged into production whenever it's current state has been tested.

In the above when cloning YOUR_PRQJECT _URL. gi t we recommend using the ssh version of url.

The reason we are keeping the template is to be able to pull tweaks and changesto it in time, eg. changesto
project dr af t s/ (will be discussed later).

1.2.2 Installing Dependencies

bi n/ vendor/install
You can asousebi n/ vendor / devel opnent , here'sthe difference:

e development uses~/ deno/ 0. 1. x/ et ¢/ conposer . j son and git clones the repositories

¢ development usually contains things like testing dependencies

install uses~/ deno/ 0. 1. x/ conposer . j son and triesto use prepackaged archives

install is super fast compared to devel opment

install skips non-production dependencies (note that dependencies have tons of dependencies of their own
soitsaLOT of stuff)

In production you almost always want bi n/ vendor /i nstal | .
Y ou can check the dependencies installed with bi n/ vendor / st at us.

Y ou can aso edit the composer file(s) and run it again to install more.

1.2.3 Private and Public Files

cd ~/deno/0. 1. x/
cp -R drafts/keys.draft/ ../private/

Y ou should now fill in configuration information. Since we're just starting it's only library specific configuration
we have to deal with so gointo ~/ deno/ pri vat e/ confi g/ nj ol ni r and review the configuration files
there, they should be fairly self explanatory.

Here are some keysto help you fill them faster, and also to give you an idea of how they should |ook;
only usethesein development.

¢ recapchatesting public key: 6Lfy4d4SAAAAADCqgQpTXxyHVEOFc-ViJP334ZqY
e recapchatesting private key: 6Lfy4d4SAAAAAJIXHfni6PMLpOAV FB80B-0eHIGJf
e example cookie key: UQY gC213 ...200 characters... bOXLuygvxN

e example api key: JKUCIO ...200 characters... Bn4Y sasAO2

That coversthe privatefiles.

We now need to copy the public files. For this example we're going to assume we're installing into a folder on
our domain, called "demo."

cd ~/deno/0. 1. x/
cp -R drafts/ww ~/ www deno/

We now need to also copy any public server specific files, in our case since we're using apache we'll need the
contents of wwv. apache; unfortunately there is no easy command for this, you'll just need to do it mostly
manually.

WEe'll also need to configure the files in question, in our case of using apache . ht access fileswe just need to
set the Rewr i t eBase inthe ~/ ww/ deno/ . ht access fileto/ deno/ sincewerein afolder (had we
been on the root of the site, we wouldn't have had any configuration to do).

All that's left now is to configure the main site settings, located in the ~/ ww/ deno/ conf i g. php inour
case.

Note that the file in question is split into (from the top) "Important Settings," "Performance Settings' and
"Optional Settings.” Asyou might guess you only need to fill in the "Important Settings" to get up and running.
Hereis an extract of said settings:

I nportant Settings

/1l where are your passwords and secret keys | ocated?

"key.path' => null, # absolute path

/1 where are the project files |ocated?

"sys.path' => null, # absolute path

/1 are you in a devel opnent environnment?

" devel opnment' => fal se,

/1 what is the domain of your site? eg. www. exanpl e.com exanple.com
"domai n' => 'your.domain.tld

/1l is your site in a directory on the server?

"path' =>"/", # nust end and start with a /

Simply follow the comments. Here's how it would look like in our case:

I nmportant Settings

/1l where are your passwords and secret keys |ocated?

"key.path' => '/hone/site_user/deno/private/', # absolute path

/1 where are the project files |ocated?

'sys.path' => "'/honme/site _user/denpo/0.1.x/', # absolute path

/1 are you in a devel opnent environnent?

" devel opment' => fal se,

/1 what is the domain of your site? eg. www. exanpl e.com exanple.com
‘domain' =>'127.0.0.1

/[l is your site in a directory on the server?

"path' => '/deno/', # nmust end and start with a /

We will also need to tell our project of the private files.

cd ~/deno/0. 1. x/
echo '/ hone/site_user/ww deno/' > .ww. path

Youcanasoadd a. key. pat h file but the system will read the path from the
/ home/ site_user/ww confi g. php if you havea. ww. pat h.

At this point you have a very good base. However thenj / 2. x/ bl ank isavery minimal branch designed to
allow you to easily pull in changes with out manually having to change the files yourself (ie. updated drafts and
so on). Thismeans it has no controllers, no themes, etc.

1.2.4 Accessing the Backend

On unix systems by default you have to prefix executable fileswith . / dueto $PATH ordering (local directory .
islast, instead of first). In development you can change this for convenience or just remember you have to
prefix with. / (ie.. / or der) al the commands bellow.

cd ~/deno/0. 1. x/
order help

Thisisthelist of all commands (aka. tasks), please see on screen help for more information. Y ou can skip the
help argument; useful for quick reference. What commands you see depends on your modules (you can create
your own tasks).

order conpile

Try opening the site. Y ou should see a 500 error. If you enable development in ~/ www/ confi g. php the
system won't hide the error. We are going to continue on assuming development is disabled.

order | og: short

Thislog maintainsa 1 line entry for al errors. While the command is open new errors will pop on screen. Y ou
should see the error "Theme Corruption: No themes present in environment file." You can exit withCt r | +C.

cp -R thenes/enpty-theme thenmes/classic

Do not use the mv command to do thisor gi t nv, enpt y- t heme needsto remain as-is for pulling updates.
You don't haveto call it "classic," just remember that's how we're referring to it as.

Open ~/ deno/ 0. 1. x/ et ¢/ envi r onnment . php and update thet henes section with
‘classic' => $syspath.'themes/classic/',.Thesectionshouldlook something like this:

"themes' => array

(

‘classic' => $syspath.'thenes/classic/',

)
If you open the site now, you should... still see an error.

If you're observant you'll notice you've been redirected to 127. 0. 0. 1/ deno/ access/ si gni n, thisis
because you have no routes, controllers, etc. What you are viewing is the internal default access page which you
were redirected to due to not having access to view anything else. The reason it's not working is because we
didn't set up the database, yet. If take amoment torunor der | og: short you should see confirmation of
this.

So let's set it up.

We're going to assume you know how to create your database in phpmyadmin, the mysqgl console or whatever
your favorite tool isfor doing so. We do not provide automated database creation since that generally involves
potentially insecure database configurations. We recommend creating a user specifically for your application
and having said user have access only to your applications database.

If you're creating the database and/or user at thistime, please review the database settings in the configuration
~/ deno/ pri vat e/ confi g/ n ol ni r/ dat abase. php.

order pdx:reset

Thiswill create the database tables and update the schema to the latest version. To see what it did you can view
the migration history with or der pdx: hi story --detail ed.

If you open the site now you should see aform; however by default no administrator accounts are created.
order make:user -u admin --role adnin -p adm nadnin --email admi n@xanple.tld

Thiswill createaadm n user caled adm n with the password admi nadmi n. The - u flag stands for
- - user nane and the - p flag standsfor - - passwor d.

Y ou can now go back to the form and log in with the new user adm n. After doing so please proceed to the
"Backend" section (see link on screen).

The backend is the main administration panel; it is generally meant for with server knowhow so applications
may have their own custom "admin panels" which their non-technical "administrators' may frequent.

The panelsin the main administration panel are customizable; you can easily add more stuff and modules can
easily add panels.

At the moment you should be viewing the " System Information” panel which shows the current state of the
system by running thenj ol ni r/ r equi r e configuration in every module. Y our current state should be
yellow and marked as "Usable." In production you want it to be all green. At the moment the only errors you
should be seeing should be "non-dev email driver" and "system email,” so we'll skip over fixing them.

Please proceed to "File Permissions.” It is mandatory at this point the section be " Stable.” On windows you
should have an easy time, but on unix system you may have trouble. The point of the section isto check that all
file permissions are in order. Every time you pull new changes or update vendors or do something else (eg.
compile files) check back with this section, it will ensure no server specific bugs emerged; it's also good idea to
check the " System Information” just in case some faulty configuration was pulled in.

Oncefile permissions are in the green you're good to go. Y ou can check out the "Users" section there but you
should see only an admin user at thistime.

1.2.5 Routing, Controllers, etc

WEell start by opening ~/ et ¢/ confi g/ rout es. php. You should see:

<?php return array

(
l/l
=> ['"home.public'],

)

The "public" in "home.public" specifies what layer stack it uses (it's still part of the name mind you). The
"public" stack isone of the default stacks and is essentially: HTTP, Access, HTML, Theme, MVC, in that order.
WEe'l talk about creating your own stack when talking about creating an api. For reference, other default stacks
are: log, html, raw, jsend, json, csv, resource (depending on your modules you may have more).

Thefileyou are viewing is part of the "routing system,” thereis also a"relay system" (the routing system has
priority in processing). Both achieve the same function but the relay system is amore advanced (and verbose)
version that you should be using when you want to specify routesin modules. All routesin the routing system
count as relays. The routing system is just avery space efficient way to write them; since the main application
tendsto have alot.

The' /' isthe pattern that's matched (ie. "the route"), in this case the route is the root of the site, ie.

127. 0. 0. 1/ deno/ . Here's some more pattern examples:. ' /' ,' / hone' ,' / peopl e/ per son/ <i d>'
"/ <organi zati on>/ enpl oyees(/ <acti on>)"' . Wordsin angled brackets are route parameters, they
are processed when the route matches and are available in the controllers. Parentheses specify optional
components; a url with out the part in parentheses will still match the route.

The array pointed to by the url pattern is the route's configuration, this consists of in order:

theroute name; thisis also get resolved to a controller class. If you wish to have the name merely be an
aliasyou can write theroute with the following syntax: ' /' => [['alias-route. public’

=> '"actual .public']], notehow the nameisan array now instead of a string. The name of the
route is mandatory.

theroute parameters; can be omitted if you don't have parameters. It's generally in the form of
"/<id> =>] 'exanple.public', ["id =>"'[0-9]+]]

theroute methods; if omitted will beinterpreted as[' GET' , ' POST']

For our purposes we are going to change hone. publ i ¢ tol andi ng. publ i c. You should now have this

file:

<?php return array

(
e
=> ['landing.public'],
)

We now need to give access rights to this route. Open
~/ deno/ 0. 1. x/ et ¢/ confi g/ nj ol ni r/access. php. Thisisthe main access control file.

The access system does not work based on ACLs, and will run perfectly fine on it's own with no database
access; assuming you don't need users. Dueto it not requiring database access you can perform alot of very
complex "can" operations. All that said, you may create ACLs and any other system you desire though the use
of Protocol classes; we are mostly going to keep it ssmple and not have database dependencies so we'll use
vanilla protocols (ie. built-in default helpers that come with the library).

Inthewhi t el i st part of the file define the following rule:

Aut h: : Guest => array
(

Al'l ow :rel ays

(
"l andi ng. public'

)

->unrestricted(),

).

Aut h: : Guest here gives usthe guest account (ie. anonymous visitors, or anyone not logged in).

Al'l ow: : r el ays isavariable parameter function that returnsa Pr ot ocol object allowing entries from a
specific relay (we could ssimply instantiate the object in question, thisis just more readable). As mentioned our
routel andi ng. publ i c aso countsasarelay.

Themethod unrestri ct ed() configuresthe object to ignore context. Normally, | andi ng. publ i ¢ with
thecontextof [' action' => "index'] isnotequivaenttol andi ng. publ i ¢ with no context, and so
we would have to specify every possible value for the action (for clarity we're not going to do this and just alow
any parameter since it's perfectly finein this case).

It's important to know that the access system will DENY until specified otherwise, not the other way round. So,
aslong asyou're specific it'simpossible to ALLOW by mistake. Similarly unless you create a protocol in the
Aut h: : Guest section (highly unlikely) it's very hard to accidentally give access to anonymous visitors.

You can enableand view or der | 0g: access to see access resolution as it's happening in case you're
dealing with access errors. We won't cover that here though.

Y ou can create your own custom classes. For example, Pr ot ocol _Vaul t Access might only alow access if
it'saspecific time of day, day of week (work day) and not a holiday. Or aPr ot ocol _Menber s_ACL might

call on the database for information to determine the users access (ACLs are only "better" when you need to
have options for customizing access inside the application; every other case you're better off with no
dependency on the database). Since it's programmatic you can also do things like grant access to an user based
on the user's relationship to someone else. So if X isinaDivison with Y then X should have access to the
project Y is currently working on; thisis simpler and more intuitive then granting and removing privilegesto X
for the project which would require checks and operations when project is created, assigned, Y is
assigned/unassigned to a project, X isassigned/unassigned to Y and all sorts of other relationship concerns.

Before continuing please open another console instance and run the following command:
clear ; order |og:short --erase

Well refer to this from now on asthe "error console.” It'sagood ideato have it open at all timesin
development, any errors that happen in the background will appear here even if while navigating the application
you may not notice them; note that some errors can be hidden by html markup such as an error that occurs
inside atag attribute value, so even the page you see may have errorsiniit.

The- - er ase (short form: - e) parameter tellsthel og: short task to throw away the previous log (this
avoids confusion).

Now open 127. 0. 0. 1/ deno/ again.

In the error log window you should see an entry with Cl ass ' \ app\ Control | er _Landi ng' not
f ound. The error istelling us our route works and our access rule works but we don't have a controller yet.

If you see the backend, you're still logged in with the admin account (user roles can have custom "dashboard”
pages to which users are redirected to; the admin panel is the default for the admin role), please sign out and
open the specified link again.

WEel'l first need to create a module for our controller.
order make: nodul e --nane core --nanmespace 'deno\core

Inthefile~/ deno/ 0. 1. x/ et ¢/ envi r onnent . php add the new module you've just created to the
modules section at the very top. The line you need to write will be specified by the command above upon
successful creation, and will look like this:

$nodpat h. ' core' => 'denp\core',
We can now create the class.
order nmake:class -c 'demp\core\Controller_Landing'

Y ou can very well just create the class by hand but this tends to be better since it checks for the namespace, fills
in comments, updates honeypot files, may fill in the class with placeholders, adds a @ odo comment, etc.

We're going to create a very standard and easy looking controller, you do have the option to make the controller

anything you need.

Open the new file~/ deno/ 0. 1. x/ nodul es/ core/ Control | er/ Landi ng. php. If you're confused
on the path please review the Cascading File System section of the documentation for the very basics of thefile
system's inner workings.

Y ou should now change the extended classto\ app\ Control | er _Base.Control | er _Baseisa
shorthand; it's essentially extending Puppet , implementing the Cont r ol | er interface and using the

Cont r ol | er trait, which more or lessin plain english means it's a special generic controller that has all the
traits of a controller but also happens to have a name and allow for operations based on it's name (basically you
can call functions such ascodenane or codegr oup and others, to do meta programming inside it).

Y ou class should should look like this:

class Controller_Landi ng extends \app\Controller_Base

We will now create the main trait,

order make:trait -t 'deno\core\Trait_ Controll er DenoConmon'

In the lifetime of a application we'll be creating more then one controller, it's useful to have at least one common
trait so we can share functionality between them; we don't use a base class since we want to have the option of
extending different types of controllers aswell. Complex class hierarchies are also harder to maintain then trait
hierarchies.

Inside the body of the Cont r ol | er _Landi ng class add the following declaration:
use \app\Trait_Control | er_DenoConmon;

Now any methods we add in the trait will be injected in the class, so long as we don't create a method with the
same name in the class, in which case the trait method will be overwritten by the class method.

Now open the new trait file:
~/ deno/ 0. 1. x/ nodul es/ core/ Trai t/ Control | er/ DenoConmon. php

A common requirement of many controllersistheindex action, it's typically the same functional code or if it's
more complex typically it delegates to some other classes to resolve so we can create a default one in our trait.

We explained earlier how in' | andi ng. publ i ¢’ the public isthe name of the stack we execute. The
convention with routes (relays can do whatever) is that the name of the stack used is also the prefix of the action
(implied underscore). Another convention is that unless specified as a parameter in the url (ie. if therouteis

/ somet hi ng(/ <acti on>) then/ sonet hi ng/ t est hastheactiont est) the default action (beit if
thereisa<act i on> segment or not) isaways "index." So given we don't specify even an<act i on>
segment the action isalways publ i ¢_i ndex. If we weren't using the "public" stack and instead using say a
custom "api" stack the action would be instead api _i ndex.

With regard to controllers and data flow, the controller is expected to return avalue that can be interpreted by

the layersinit's stack, in the case of the "public" stack that value must be either ast r i ng or aobject
implementing the\ nj ol ni r\t ypes\ Render abl e interface (see types section). An api stack on the other
hand might require you alwaysreturnaPHP ar r ay.

Please add the following publ i c_i ndex method:

/**
* @eturn \njolnir\types\ Renderabl e| string
*/

function public_index()

{

return 'hello, world';

}

If you now open 127. 0. 0. 1/ deno/ you should see "hello, world." If you don't please check your error
console, you may have atypo or some other error.

Above is the basic example, let's do something more complex; again remember you can always have your own
way of doing things, there are only some basic interface requirements (which if you wish you can get rid of by
not using the "public" stack). Replace the above publ i ¢_i ndex method with the following:

/**
* @eturn \'njolnir\types\ Renderabl e| string
*/

function public_index()

{
$t hi s->channel ()->set('title', 'Denpn');
return \app\ ThemeVi ew. : fortarget (static::dashsingular(), \app\Thene::instance())
->pass('control', $this)
->pass(' context', $this);
}

Back intheControl | er _Landi ng classaddstatic $granmar = ['landing'];,thiswill
allow for thelittle bit of meta programming that's happening withthe st at i c: : dashsi ngul ar () method
above. Your Cont rol | er _Landi ng class should look something like this:

class Controller_Landi ng extends \app\Controller_Base
{

use \app\Trait_Control |l er_DenoConmon;

static $granmar = ['landing];
} # class

If you now open the site you should seein your error log a message containing the following: Thene
Corruption: undefined target.Thiserroristelling you that the "theme target” you tried to access
(ie. "landing") doesn't exist. In our case the target in the theme corresponds to the controller name because we
chose to haveit thisway, but in general you can have the theme targets be whatever. This means that using a
basic mockup controller you can mockup an entire site and work on the style and layout independent of the
site's functional code.

WE'l only cover basics to working with themes.

First, go to the theme configuration file: ~/ deno/ 0. 1. x/ t henes/ cl assi ¢/ +t hene. php

Now add the following in the "mapping" section of thefile:
"landing’ =>['landing],

This tells the theme system that you want to resolve the target "landing” using the given array of files; in our
case just the one "landing” file. The file paths are resolved from the root of the theme and if we had provided
multiple files they would have been placed one in another.

Now create thefile~/ deno/ 0. 1. x/ t hemes/ cl assi ¢/ | andi ng. php

Based on how we've written our publ i ¢_i ndex method we now have access to two variables $cont r ol
and $cont ext . $cont ext isin genera the visible user recognizable data on the page, while $cont r ol is
the meta-data on the page (and almost always heavily tied into the controller, hence the name). Things like the
action of aform, the state of the page (editable, non-editable) or some other details (what kind of pageit is,
theme options, etc) generaly fall in the category of page meta-data and will be accessed via$cont r ol . In our
case both $context and $control point to the same object, aCont r ol | er _Landi ng instance; sometimesit's
useful to split contexts outside of the scope of the controller so you can have multiple contexts compose into a
single context that you feed to the page.

We are not going to bother with $cont r ol and $cont ext for now, please just write "hello, theme" inside the
file.

If you now re-open the site you should see "hello, theme." If you don't, as before, please check your error
console for typos and other errors.

One thing you probably have not noticed is that the entire output has been wrapped in the correct html (even
when you just returned "hello, world" from the controller earlier), thisis due to the html layer. If you do not
have very good understanding of the theme system you are advised to avoid using a stack with out the html
layer or a stack with out a compatible drop-in-replacement of the html layer, since it does alot more then just
wrap your content in correct html meta.

We will now continue with this basic static site example by adding a method to display the "hello world"
message.

Add the following method in your Cont r ol | er _Landi ng class:

/**

* @eturn string
*/
function say_hel |l o()

{

return 'hi!';

}

Replace the contents of your ~/ deno/ 0. 1. x/ t henes/ cl assi ¢/ | andi ng. php filewith
<?= $context->say_hello() ?>.

If you open the site you should now see "hi!"

It's good to use the correct variable when accessing method even though they are on the same class since they
might not always be on the same class; say_hel | o isnot metadata so we use the $cont ext variable.

Continuing on with the discussion on themes, themes may have a variety of different modules: style module,
scripts module, etc. Y ou can define your own if you want; if you don't like how the style module supports
multiple styles and requires sass you can just make your own custom style module that just works with vanilla
CSss.

Which modules are enabled for the theme is determined by the loaders section in the theme +t hene. php
configuration file, but we won't cover that here.

All modulesin general will work with the same target you provide to the theme. Where the theme resolvesit to
a page composition, the module resolvesit to it's own composition. In the case of scripts for example the target
specifies which scripts appear on the page (assuming we don't specify we want all scripts on all pages).

We will add basic script to the page to illustrate.

We start by executing a monitoring script that will compile the javascript to single file. Please run:
~/ deno/ 0. 1. x/ t henes/ cl assi ¢/ +scri pts/ +start. rb thiswill open aconsole; while the console
is open files in the scripts directory will be monitored for changes and compilation done automatically.

Now open the main configuration file+scri pt s. php in the same folder as the monitoring script. As with the
theme configuration we specify the rules for the target in the mappi ng section; or to beexact t ar get t ed-
mappi ng since we want per page customization. Currently there should be arule theref r ont end already
defined, since we're not using it, please renamef r ont end to | andi ng and add hel | o to the existing list.
Your mappi ng section should look like this when done:

"targeted-mappi ng' => array
(
‘landi ng' => array
(
' base',
"hell o'

),

Now we need to create thefile hel | o. If you look at the configuration you'll notice that the sour ces isset to
src soour hel | 0. j s filewould be located at
~/ deno/ 0. 1. x/ t henmes/ cl assi ¢/ +scripts/src/hello.js.

Inthefilejustaddanal ert (' hel I o, worl d'); .If you now open the site you should see an alert with
"hello, world." Y ou may haveto Ctrl+R, aternatively you can simply update the script version in the
configuration file with the mapping. If your browser has support for source maps you should be able to find
src/ hel | 0.] s inyour inspect menus.

1.2.6 Creating an API

This section follows immediately after the code you obtain from the previous sections and focuses on creating a
REST API.

For this section it's highly recommended you install the Postman REST client extention. Y ou may install
another so long as you can follow along. The extention is not mandatory for completing this section but using it
(or asimilar technique) is highly recommended.

The reason you need the extention is for testing; it's quite pointless to test your api while running the
application. Worry about your api working with an extention like Postman that lets you run POST, GET,
DELETE, PUT, etc requests with json payloads against your server and once you know it's all working worry
about the frontend application you create for your users consuming it; who you create first, the backbone
collection or the api is up to your personal preference, just remember that you should not work on both at the
same time since, while by no means impossible, it's harder and more time consuming even for small issues.

There are other reason too, such as redirects; if you test your api in the browser the internals will try to redirect
you to an appropriate error page in case of an error; while helpful in alive application it's very disruptivein
development (you can aso enable development mode to get rid of this functionality, go to your

~/ ww/ deno/ confi g. php).

At this point you may chooseto replace your | andi ng. php with the following to help you build a Backbone
application.

<?
nanespace app;
/* @ar $thenme TheneVi ew */
$tenpl ates = array
(
/'l pages
/1 ' Dashboard' => ' pages/ Dashboard'

/1 rmodul es

/1 no nodul e tenpl ates
/] extentions
/1 no 3rd party extentions
)
?>
<di v i d="sheep-context">
<di v cl ass="cont ai ner">
<hl>Loadi ng. .. </ hl>
</ di v>
</ div>
<? foreach ($tenplates as $tenplate => $path): ?>
<script type="text/x-underscore-tenplate" id="<?= $tenplate ?>-tenplate">
<?= $t henme->partial ("tenpl ates/ $pat h") ->render () ?>
</script>
<? endforeach; ?>

Thenew | andi ng. php will solve most of your issues with templates. Y ou just put all your templatesin a
template folder and your application will dump them (based on the template configuration you specify above)
into thel andi ng. php page which in turn isyour main application entry point. Thisiswhy we changed the
name to "landing” in the early steps; home and frontend are generally more appropriate for static pages.

We're not going to make use of it in this section since we'll be focusing on creating the api, that should be
roughly all you need to be able to start using aimost any backbone beginner tutorial.

Getting back to the API itself, please replace your ~/ deno/ 0. 1. x/ et ¢/ confi g/ r out es. php with the
following:

<?php

$id regex = '[0-9]+";

$id =['id => $id_regex];

$api methods = [' GET', 'POST', 'PUT', 'PATCH , 'DELETE];
return array

(
I - x B e
/1 clients
"lapi/vl/client(/<id>)"
=> ['vl-client.api', $id, $apinethods],
"lapi/vl/iclients
=> ['vl-clients.api', [], $api nethods],
B - (¢ [I i R

] /]
=> ['landing.public'],

There's not too much of adifference, we just added 2 api routes. The 2nd and 3rd parameters are optional and
when specified must be arrays, the first one specifies what regex the segments need to match to be valid (by
default it's[] asin no parameters which defaults the parameters to matching everything) and the 3rd one
specifies what methods are allowed (by default [* GET' , ' POST'] if not specified).

Weuse $i d asan array since PHP allows + on arrays and it acts asamerge. So if we had $nanme =
["name' => '"[a-z]+'] then$id + $nane wouldbeequivaentto['id" => "[0-9]+] +
['name’ => '[a-z]+'] andproduce['id" => "'"[0-9]+, '"nane' => '[a-z]+'].Thisis
merely used for clarity, $i d + $nane isvery short and to the point.

Our two new routes use the api stack. By default the framework does not come with an api stack to avoid
modules polluting logic by making assumptions on how the api stack works. For that reason the api stack is
considered application reserved and you have to define it yourself. To do so create thefile

~/ deno/ 0. 1. x/ nodul es/ cor e/ +App/ confi g/ | ayer - st acks. php with the following code:

<?php return array

(

"api' => function ($relay, $target)

{
$json = \app\CFS::config('njolnir/layer-stacks')[']json'];
return $j son($relay, $target);
} il
); # confi

Y ou now have defined the stack. We cheated and just haveit call thej son stack, but that's perfectly fine
implementation for our use case.

In Postman access127. 0. 0. 1/ deno/ api / v1/ cl i ent s. At this point you should see an error
{ "error": "URL called is not a recognized API." } withthe404 status. Thisis because
we haven't given access rights to our api.

To give accessrights, in~/ denp/ 0. 1. x/ et ¢/ confi g/ nj ol ni r/ access. php replace your previous
Aut h: : Guest rulewith the following version:

Aut h: : Guest => array
(

Al'l ow :rel ays

(
"l andi ng. publ i c'

)

->unrestricted(),
/1l AP, vi1
Al'low :rel ays

(
‘vl-client.api',
"vil-clients.api'

)

->unrestricted(),

)
WEe'll also need to create the appropriate classes to handle the request.

order make: nmodul e --nanme api.vl -n 'denmo\api\vl

Don't forget to enableit in your ~/ deno/ 0. 1. x/ et ¢/ envi r onment . php.
order nmke:class -c '\demp\api\vl\Controller_Vidients'

Open the new class, located in ~/ deno/ 0. 1. x/ nodul es/ api . vl/ Control | er/V1Qd i ents. php
and change the extended classto\ app\ Cont rol | er _Base_V1Api .

In Postman now access 127. 0. 0. 1/ deno/ api / v1/ cl i ent s, you should see the error "Not
Implemented” with a 501 status. The error is generated by the placeholder GET handler provided by
Control | er_Base_ V1Api .

Now that we got the groundwork donefor 127. 0. 0. 1/ deno/ api / v1/ cl i ent s it'stimeto get the
internals sorted. There are several ways to do this, one way isto use Mar i onet t e models which are models
specifically designed to help in creating APIs. More precisely they follow Backbone's flavor of APIsand to help
managing them they also mirror backbone's conventions, so you have a class for the collection and a class for
the model and all methods you call on are equivalent to the http methods you would call. So calling

$nodel - >put ($conf) will update the entry and return an updated entry, calling $nodel -

>pat ch($conf) will partially update the entry and return the updated entry, calling $col | ect i on-

>get ($conf) will return all the entries, and so on.

The other type available by default (you're free to define your own system that works for you) is a static library
model, where we simply define a class with static methods and use traits to inherit functionality; thisis very
flexible but less automated—in practice this means we can get complicated jobs done easier and more
intuitively when using the static library model method (because you have alot of control) but can get alot of
simple jobs done quicker when using the Mar i onet t e method (because you have alot of automation). Welll
talk about the static library models later, for clients we'll show how to defineaMar i onet t e model system.
We are going to continue with Marionette models. We're going to assume a client is defined by merely a
“family_name" and "given_name".

order make:class -c¢ 'denp\core\ClientCollection'
order make:class -c 'denp\core\d ient Model

In~/ deno/ 0. 1. x/ nodel s/ core/ d i ent Col | ecti on. php change the extended class to
\ app\ Mari onett eCol | ecti on. You canremove the @ odo, the class will work as-is based on it's name
only.

In~/ deno/ 0. 1. x/ nodel s/ core/ A i ent Mbdel . php change the extended class to
\ app\ Mari onet t eMbdel .

With the main classes created we now need to create the configuration file that goes with them. Create the file
~/ deno/ 0. 1. x/ nodul es/ cor e/ +App/ confi g/ cl i ent . php with the following content:

<?php return array

(
"name' => 'client',
"key' =>'"id',
"fields' => array
(
"id =>"'nunber',
"given_nane' => 'string'
‘fam ly_name' => 'string'
)
); # config

Finally we need to a database table. For this we'll create a paradox migration. Paradox migrations work roughly
likethis:

1.
you have channels, usually each module hasit's own channel but sometimes a set of modules may have

their own; for our application we'll create a"demo" channel

2.
each channel hasit's own version history, so 1.0.0 for the demo channel is different then 1.0.0 of the

mjolnir-access channel

the system keeps the history in the database; you can view it on the command line by using pdx:history

the system also works by default in lock mode so it won't allow destructive operations such as
uninstalling the database

' each migration isaentry in the mjolnir/paradox configuration file, which in our case would be located in
~/ deno/ 0. 1. x/ nodul es/ deno/ cor e/ +App/ confi g/ nj ol ni r/ par adox. php

when you run pdx:upgrade the system will ook for changes and run any previously not executed
migrations

migrations only go forward so when testing and or moving between branches with different database
structures in development you'll need to generally turn of database locking so you can perform database
resets (ie. uninstall -> reset to latest, or specific version + upgrade if testing migrations)

migration operations NEVER call on anything but basic low level database operations with the only
exception being the "table" static method in modules which provides the table name. The reason for thisis
that anything above low level apisis dependent on the state of the database and hence dependent on both
certain things existing and certain things existing in a particular state, both of which are not guaranteed
when the migrations are running. Even a basic count method can potentially reference a certain security
field when performing the count which might only be available from a certain migration onward.

o lets start by creating the paradox file, for clarity we'll be relocating the actual migration part to a separate
configuration file (this is recommended since migrations are many and can get quite long).

Createthefile~/ deno/ 0. 1. x/ nodul es/ deno/ cor e/ +App/ confi g/ m ol ni r/ par adox. php
with the following contents:

<?php return array
(
"denp' => array
(
' dat abase' => 'default'
/'l versions
"1.0.0" => \app\Pdx::gate('denn/1.0.0"),

) L]
); # config

\ app\ Pdx isthe main "Paradox" library class, provides access to helpers (and the operations themselves if you
need to call them in code). Thecall to\ app\ Pdx: : gat e(' deno/ 1. 0. 0") will basicaly addti el i ne/
to the key and load it as a configuration file, returning it as an array.

Create thefile

~/ deno/ 0. 1. x/ nodul es/ cor e/ +App/ confi g/ njolnir/timelinel/ deno/ 1. 0.0. php withthe
following contents:

<?php return array

(
" description'
=> "Install for Cients.",
"configure => array

(

"tables' => array

(
\app\ dient Model : :table(),

)
),

"tabl es' => array

(
\app\ C i ent Mbdel : : tabl e() =>

id :key _prinmary,
gi ven_nanme :nane,

fam | y_nane : nane,

PRI MARY KEY(i d)

)
); # confi

The description will be dumped into the history when the migration runs. The conf i gur e key isfor providing
meta information to the migration system, in this case we're telling it what tables it should be aware of with this
migration (thisinformationsis used for things like uninstalling). The other t abl es key istelling it which
tables we want to create; we're using placeholders for easy customization of the installation (they're also easier
to read).

With alot of configuration options you can just throw in afunction and do whatever you want, but this requires
some knowledge on the internals so we'll leave it as-is.

In this example we also just used one channel, but you can define as many channels as you need at the
application level. Y ou can also set dependencies between versions. Version 1. 1. 0 of deno might depend on
version1. 0. 1 of nj ol ni r-access. Thisisdone by defining ar equi r e key with an ar r ay of
dependencies. Generally it's recommended you place the array dependencies in the paradox file which when
using Pdx: : gat e you would do by passing the array as the second argument.

With our migration in place we now only need to upgrade our database:
order cl eanup
order pdx:upgrade --dry-run

We use cl eanup in case the system cached the previous configuration state. The pdx: upgr ade --dry-
r un will show you the stepsit will do but not actually do them. Y ou should see 1 line that reads "1.0.0 demo"
asin "run the demo 1.0.0 migration."

order pdx: upgrade
Y ou should get "Upgrade complete.”
order pdx: history
Y ou should see your migration as the last one executed. You can use - - det ai | ed to get the description too.

Now that we have the database and model we can return to our api.

Add the following method to ~/ deno/ 0. 1. x/ nodul es/ api . vl/ Control |l er/V1d ients. php

/**

* @eturn array
*/
function get($req)

{
$collection = \app\CientCollection::instance();
$conf = [];
I isset($req['limt']) or $conf['limt'] = $req['limt'];
I isset($req[' offset']) or $conf['offset'] = $req[' offset'];
return $coll ecti on->get ($conf);
}

In Postman access127. 0. 0. 1/ deno/ api / v1/ cl i ent s, you should see "200 OK" on the statusand []
on the returned value.

With the Collection part done, we'll now create the Model part to get some itemsin. We've aready got the
database and model class setup from before so we just need to create the api.

order nake:class -c '\demp\api\vl\Controller_Vidient

Thefile created islocated in~/ deno/ 0. 1. x/ nodul es/ api . vl/ Control | er/V1d i ent. php.
Please change the extended classto \ app\ Contr ol | er _Base_ V1Api and add the following methods:

/**
* @eturn array
*/
function get($req)
{
$id = $this->channel ()->get('relaynode')->get('id");
$nodel = \app\dientMdel::instance();

$entry = $nodel - >get ($i d);
if ($entry == null)

{
$t hi s->channel ()->set (' http:status', '404 Not Found');
return ['error' =>"'Client with id ['.$%id.'] does not exist.'];
}
return $entry;
}
/**

* @eturn array
*/
function post($req)

{
$collection = \app\ClientCollection::instance();
$entry = $col |l ecti on->post ($req);
return $entry;

}

/**

*

*/
function del ete($req)

{
$id = $this->channel ()->get('relaynode')->get('id);
$nodel = \app\dientMdel::instance();
$nodel - >del et e($i d) ;
return null;

}

/**

* @eturn array
*/
function patch($req)

{
$id = $this->channel ()->get('relaynode')->get('id");
$nodel = \app\dientMdel::instance();
return $nodel - >patch($id, $req);

}

A few things to explain before moving on. The $t hi s- >channel () call refersto the channel for
communication used by the current request. The channel object is shared between layers, the controller and
whatever else participates in the request, and its purposeis to allow for isolation of metadata specific to the
request. In this case we're using it to get ther el aynode (ie. the route object, since routes are relays) and from
the relay node we retrieve the id parameter in our route. In the get method we're also communicating with the
channel how the ht t p: st at us should changeto 404 Not Found for the case where the entry does not
exist.

Y ou might be confused by why we'reusing C 1 ent Col | ect i on to perform the post operation. Thisisa
slight deviation to the way Backbone works for correctness; the correct way to create anew entry in amodel is
to post to the collection, but backbone posts to the root of the model, hence why we're calling the collection

there (the correct way to do it) in the client api (the api backbone expects to be able to post new entriesto). Just
to be clear, the very obscure functionality related to doing a POST against amodel is not supported.

If you wish you may also change the routes like so:

"lapi/vl/clients/<id>

=> ['vl-client.api', $id, $apinethods],
"/api/vl/iclients'

=> ['vl-clients.api', [], $apinethods],

ie. add an"s' to the v1-client.api route and make the id mandatory.

Now you can have the post method into the Cont r ol | er _V1d i ent s classinstead of
Controller_Vidient.

It isindeed more correct; we've chosen to explain it aswe did in case you wanted to have separate urls, and
because it's less confusing on how the url work with respect to what the models in backbone are calling. With
the above code what will happen is backbone will try to call the root of the client url and the request won't
match but will match the collection url since it's equivalent to the root.

In Postman, set the method to POST, select payload as raw (JSON) and run the following:

{

"fam ly_nane": "Joe",
"given_nane": "Average"

}

Y ou should get back ajson with the fields and an id. Run it 4 more times; feel free to change the name if you
wish, but since we didn't add in validation you can run it as-is.

Here are some basic operations:

1.
in Postman, do aGET request on 127. 0. 0. 1/ deno/ api / v1/ cl i ent/ 2, you should get the entry
withid 2.

2.
in Postman, change the GET to a DELETE and run the request

3.
in Postman, change back to GET and run the request, you should get a 404 status this time with an error
message

4.

in Postman, doaGET on127. 0. 0. 1/ deno/ api / v1/ cli ent s, if you been following along you
should get entrieswith IDs 1, 3, 4, 5 since we DELETEd entry with ID 2 earlier.

in Postman, enable URL params and add "limit" with the value "2", you should now only see entries 1
and 3

6.
in Postman, add the url parameter "offset" with value "1", you should now see entries 3 and 4

We won't cover how to actually write the backbone code since at this point there's no different between writing
it inyour application or aplain html file (we showed how to setup javascript earlier; which isthe main
component you need).

Finally we're also going to show how to use a static model library. Generally when you have an application that
only uses static model libraries to function you would go with the naming convention Model _Cl i ent which
will place your classinside aModel directory. When working with Mar i onet t e classes the naming
conventionisC i ent Li b sincethat placesit next to the Model and Col | ect i on class, whichisalot easier
to manage. Obviously we're going to go withthe Cl i ent Li b variant.

order make:class -c¢ '\denp\core\dientLib'

Remove the extends declaration and add the following traits to the class body:

use \app\Trait_Mdel Factory;
use \app\Trait_Mdel Uilities;
use \app\Trait_Mdel _Coll ection;

WE'll also need to resolve the table name. Normally we would add a static field $t abl e with the name but
since we are using marionettes and have a configuration file setup we'll overwrite the table() method to retrieve
the correct value so everything isin one place.

Now add the following method so the the model knows which table to use:

/**

* @eturn string table nane
*/

static function table()

{
return \app\dientMdel ::table();

}

To show that it all workswe'll modify the get method for the collection, since other methods work differently
then what backbone expects.

Replace the method "get" in Cont r ol | er _V1d i ent s with the following version:

/**

* @eturn array
*/

function get($req)
{

$limt = isset(Sreq['limt']) ? Sreq['limt'] : null;

$offset = isset($req[' offset']) ? $req[' offset'] : O;
return \app\ClientLib::entries(1, $linmt, $offset);
}

In Postman, doaGET on127. 0. 0. 1/ deno/ api / v1/ cl i ent s with limit 2 and offset 1. Y ou should get 3
and 4 like before.

We won't go into exact examples on why you would use one or the other but to give you an idea, lets say you
needed to have a very special relationship and a very specific data type. In the marionette model you haveto (a)
find away to interpret it though GET, POST, PUT etc, (b) write adriver to handle all the operationsin a
dynamic way (which isn't as easy asit sounds), and (c) use the driver in your configuration. On the other hand
in the static library method you just boil down the problem to raw SQL and place it in whatever method you
want; you can just create your own method, since the model is designed to act as alibrary, not follow an
interface, and all methods are independent (a given since they are static). Writing raw SQL solves problems
really really fast. So, as mentioned earlier, the question boilds down to: do you want control, or do you want
automation. Mind you both have mechanisms for dealing with repetition, drivers for the marionette system and
native traits for the static library model system.

Also, if you ever need a specia static method to perform an operation, the correct way isto create the

C i ent Li b class equivalent, sincethe Model and Col | ect i on classes are specifically designed to just
consume drivers and should not be forced to do anything more. There are other reasons too, the Lib class has
access to static helpers, the Lib class works with static methods, whereas the others require instantiation and so
you may require instantiation of the class you'reinto to call methods you need, the Lib classis aso a clearer
place to have the methods then having them split over two classes, etc.

But again, as mentioned earlier, you can ssimply create your own model system to suit your own needs, these are
just the defaults provided.

1.2.7 Upgrading

Asthe previous sections thisis more server oriented for clarity.

It's assumed we're upgrading the instance created in the previous part.

cd ~/deno/
cp -RO0O.1.x/ 0.2.x/

Wecp (ie. "copy") instead of gi t cl one to preserve any file permissions, specia fileslike. www. pat h,
logs, etc. It's also much faster in some cases since we don't have to connect to the internet to check for updates
and such.

Update ~/ ww/ conf i g. php paths, namely "sys.path”, enable maintenance mode. The good thing about

keeping our private keys and such in a seperate "private" folder is that we now don't have to worry about it.
Since we cp'ed the directory, if we don't do any database upgrade we can change back to the old source tree by
reverting sys. pat h tothe0. 1. x version.

git pull origin production
bi n/ vendor/install
order conpile
If you are using packaged mode you can skip the conpi | e step.
order pdx:upgrade --dry-run
Check that everything is as expected. Then run it:
order pdx: upgrade
At this point check your admin panel that everything isin the green.

When everything isin order disable maintenance modein ~/ www/ conf i g. php, and you're done.

Keep in mind projects may have extra dependencies that require extra configuration to be performed.

1.3 Types

To allow for easier use of classes alot of common functionality has been centralized into a set of interfaces.

Thisisamultifaceted feature. However, to avoid confusion the interfaces are designed for work within the
library, and while they may be used outside the library as you please, they are not designed with that in mind.
Essentially if it exists, it's because it has a purpose within the library, not because it's some sort of standard.

Some functionality interfaces establish within the library,

1.
simplified interaction with classes sharing common themes, such as file manipulation, document-like

content, etc
easier to understand and use patterns; employing interfaces creates repeatable easy to pick up patterns

easy integration, we try to avoid classes accepting implementation extending some base class; instead of
just implementing the interfaceis fine

facilitate adapter patterns

(Thisis not an exhaustive list)
Fine details will be treated in individual sections, however one common point is getters, commands, and setters.

In the mjolnir interfaces a getter is always a function with the name of the property:

$content = $docunent->body(); # "content equals docunent body"
$witer->eol string();

If useful you can return sub types derived from the main type of the property. Y ou should do this by appending
akeyword after the property name, but avoiding and underscore.

Sview>file(); # relative path
$view>filepath(); # absolute path
$view>filehandler(); # file handler
$view>fileobject(); # file as an object

It can be as crazy asyou like, for example:

Sview>fileurl ();
A setter on the other hand is afunction that is never just the name of the property. In mjolnir all setters are
composed of the name of the property (always the first part) followed by either the generic term, such as"is’, a
type or some other descriptive word, concatenated together with an underscore. So lets say we have a class
representing a html tag, setters for the class property might look as follows.

$tag->class_is('btn'); # "tag class is btn"
$tag->class_string('btn btn-primry');
$tag->class_array(['btn', "btn-primary']);
$t ag- >cl ass_fronm($ot her _tag);

This patterns keeps the getters and setters close togheter and allows for alot of setters with very intuitive syntax.

The third category is commands. So for example, continuing from the example above the following are
comamnds:

$t ag- >appendcl ass(' btn-primary');
$t ag- >r enovecl ass(' btn');
$tag->standard('twitter');

Thevariant $t ag- >cl ass_append(' bt n- pri mary"') isdiscouraged because it blurs the line between
what's a variant on a setter and what's a manipulation function. Functions, such appending a class, aren't looked
any differently then any other non-setter or non-getter function. When it comes to naming, active wording is
preferred, but not required.

To clarify, asarule of thumb if you have afunction that only partially sets a property, it's probably a
mani pulation function and not a setter. A setter should (typically) set the whole value.

A setter doesn't imply a getter, and neither does a getter imply a setter. Both can exist with out the other, and of
course you can just have internal properties or states that are simply manipulated but never explicitly gotten or
Set on their own.

Sometimes the rules may be broken in favor of using very established terminology.

1.3.1 TypeTraits

All types have a corresponding trait using the naming convention of prefixing the interface namewith Trai t _.

Within the library one reason why traits are used is to keep the codebase dry by moving alot of boilerplate code
(such as getters, aliases, magic method) to the corresponding trait. So for example the trait for the HTMLFor m
defines al the field shorthand methods (ie. t ext , passwor d, etc) which are all just fancy aliases for the

fi el d method.

Another reason isto manage trait bloat. Essentially one problem that happens when you use afair amount of
traitsis that you start to have long hard to follow trait hierarchies, so for exampleaTask isaExecut abl e,
Met a, Wi t abl e. This means that every class that implements Task needs to use the corresponding traits for
the Execut abl e, Met aand Wi t abl e interface. If the classisjust implementing Task the trait
declarations might not be too unintuitive but as you add more interfaces to the class they become unwieldy. To
combat this, all traits of ainterface are responsible for managing the traits of the extended interfaces. This
makes for easy to follow trait declarations. Thereis one exception. If ainterface isintended to be used by a
classwhich isachild class of another class, the trait will not borrow the implementation from the super
interface since the class by extending the class will automatically get the implementation anyway. For example,
the trait for the HTMLFor nFi el d_Bool ean interface (used by radio and checkbox fields) does not touch the
trait for the HTMLFor nFi el d interface. Or, thetrait for the HTMLFor nFi el d interface does not touch the
trait for the HTMLTag interface.

Finally the main reason traits are extensively (and to some extend why interfaces are so extensively used) isto
allow for high level of code injection though out the library. For example the Met a interface manages most
metadata related tasks; if you ever want to do some specific operation or have some specific shorthand you need
only extend the trait in your application modules, or some specific plugin, add the functionality and it will be
inherited by all the classes within the library that use the Met a interface (which in this case would be alot!).

Hereis an example of how you would go about extending the trait:

trait Trait_Meta

{
use next\Trait Meta;
/1 your extra features
} # trait

Inthe examplenext \ Trai t _Met a will be resolved to the closest trait in the module hirarchy so this code
will transparently create a chain of traits extending other traits for functionality (finishing up with

\'njol nit\types\ Trait_Met a). For moreinformation on the special namespace segment next seethe
Cascading File System section.

1.3.2 Generic Types

The following types are core types used though out the type system as base types for other types:

e Meta

¢ Renderable
e Executable
e Standardized
e Filebased

¢ Processed

e Channeled
e Paged

Some of the more specialized generic interfaces

o Writable

e Savable
Recoverable
Matcher
Linkable
Contextual
Eloquent
Exportable

Met a interface

The Met a interface is one of the most extensively used interfaces within the library since they ssimplify property
management. Using a class implementing the interface is quite easy:

/1 you set a property via the set method

$obj ect->set (' ny_property', 'ny_value');

/1l you retrieve the property via the get nethod

$obj ect->get (' ny_property');

/1 you can al so provide a default when getting a val ue

/1 if not specified the default value is nul

$obj ect->get (' ny_property', 'default_val ue');

/1 when a property is an array you use add instead of set, though you can
/1 still use set to replace the entire contents or enpty the array
$obj ect - >add(' ny_property', 'ny_value');

/1 sometimes you want to just get the entire netadata

$obj ect 1- >net adat a() ;

[l ...typically you want an objects nmetadata to pass it to another
$obj ect 2- >net adat a_i s($obj ect 1- >net adata());

Generaly you would want to use Met a when you have a class that would otherwise be bloated with aton of
properties. Y ou don't need to sacrifice usability when using meta since if you think a user might find a property
hard to remember you can simply create a magic method that just calls the corresponding meta method.

Typicaly you'll also get cleaner class code by working with one met adat a attribute, compared to working
with 10+ attributes.

Render abl e interface

A renderable object is one that can be tranglated to string. Typically the whole point of the object isto
eventually get translated to a string.

The interface has one main method r ender which performs the trandation to string (it's useis self
explanatory). The interface also defines several utility methods: addnet ar ender er , net ar ender er and
i nj ect met ar ender er s which are used for objects which need help in rendering subparts of themselves.
For most renderabl e objects though, these will do nothing since they don't have meta renderable parts to them.

For correctness while in development modethe t oSt r i ng method of aRender abl e object is defined to
throw an error (it will smply attempt to call r ender in production). Thisis the default because alot of the
time rendering involves injecting outside data and is not merely self contained to the object, which may easily
lead to errors and unfortunately PHP'smagic __t oSt r i ng method does not allow for errors to happen. In fact
the best result you can get when errors occur inthe __t oSt r i ng method isto just return nul |, which will
also constitutes an error, but is at least semi-recoverable.

Occasionally implementations may have good reasontouse __t oSt r i ng in which case they would overwrite
the behaviour defined by Trai t _Render abl e andallow __t oSt ri ng tocal r ender in both production

and development, but still return nul | on errors. The reasoning here is that these are systems where an error is
very unlikely, rare, or easily recoverable within the context of the class.

Execut abl e interface

An executable is anything that canr un (ie. execute).

There's nothing more to say about this interface, it's very much self explanatory.

St andar di zed interface

A standard is defined as a specific configuration on an object bearing a certian name. So for exampleif we
consider aform, the way twitter bootstrap defines we should create the markup for said form is aessentialy a
standard. We can createat wi t t er standard (inthiscaseinthenj ol ni r/ ht m f or mconfiguration file) and
we would use it on aHTM_For mlike so:

$form >apply('twitter');

Now presumably the form would output input fields with twitter bootstrap markup; assuming we've defined it
correctly.

Standards are useful because they provide an easy way to deal with boilerplate configuration. Simply define the
configuration in one place as a standard and use it anywhere. They aso help make alot of configuration DRY
with out requiring the class itself from housing a self-configuration method for each; instead you would
intuitively place them in a configuration file.

Fi | ebased interface

There are many classes dealing with files. This interface standardizes the way you communicate to such classes
about the file they are working with.

/1 specify a file based on a relative path determ ned by the rules and
/1 conventions of the object in question

$object->file_is('ny_file');

/1 specify via an absolute path

$obj ect->file_path('/path/to/ny_file');

/1 get file path

$obj ect->filepath();

Pr ocessed interface

A Pr ocessed object is an object that has either processing before or after (or both) it's execution or some
other important event in it'slife cycle.

The interface provides a means to add dynamic processorsviaadd_pr epr ocessor and

add_post pr ocessor , and also the main means of executing said processors or otherwise specialized code
though pr epr ocess and post pr ocess.

An example of aclass making use of thisis your average Controller. You will typically want to execute some
code before and after the requested action.

Channel ed interface

A channeled object is an object that communicate using a channel or needs a channel to work. A Channel is
just aPr ocessed, Met a object. So essentially the whole idea of channelsis you have this shared Met a.

Thisinterface merely specifies the main getter and setter for such an object when dealing with channels, ie.
channel _i s andchannel .

Paged interface

A lot of the time you deal with pagination. Paged does not deal with creating the pagination but telling an object
what page you want. It isused as follows:

/1 limt result to a certain page

$st at enent - >page(2, 20, 3); # 2nd page, showi ng 30 (skipped 3)

/1 the offset (3rd paraneter) is optional

$st at enent - >page(1, 15); # 1st page, showi ng 15

/1 if you want all sinply provide null, if infinity is not an option this
/1 method will merely retrieve the maxi mum number of entries possible

$st at enent - >page(nul |);

Wit abl e interface

A writable enabled object is one that accepts awriter. The interface merely provides a generic way to add and
retrieve the objects writer.

Implementing the interface doesn't mean the object itself iswritable on, just that it works with awriter

An example interface that uses thistypeisthe Task.

Savabl e interface

A savable object is one that requires it's present state to be saved when performing operations.

Recover abl e interface

A recoverable object isone that providesar ecover operation. The operation should reset the state of the
object to something that can be processed given it's present unstable state.

Typically thisinvolves the object being executable or renderable and once recovered the object is merely re-
executed or re-rendered.

Mat cher interface

A matcher object is one that provides acheck method returning aboolean value of t r ue or f al se. Asit's
name impliesit's designed to match something, however the interface does not force any input conventions to
allow for any type of match. Typically the matcher object will simply store the information for what to match
against init's state.

Li nkabl e interface

A linkable object is one that can be converted to a URL, ie. universal resource locator.

The interface is specifically designed for converting to URLs and not URIs.

Cont ext ual interface

An object implementing the contextual interface means the object has context, typically security relevant
context (but not enforced as such). The interface provides asingle universal cont ext method that causes the
object to either return null or an array representation of it's context.

This should not be thought of as serialization where the object in question can be deserialized. A contextual
object is merely one that can provide context for inspection purposes.

El oquent interface

An eloquent object is one that allows language prefixes. The way it works is that you provide alanguage prefix
and any keys used for trandation in the objects internals get prefixed with said language prefix, giving you
control over al the objects tranglations but allowing you to have multiple instances of the same object with
different tranglations.

Export abl e interface

An exportable object is one that can produce an array representation of it's state. Thisis similar to serializing an
object only the data representation is an array instead of a string.

Exporting an object is generally meant for exporting to another medium, hence the easier to work with array
type, rather then exporting and importing back into alater session (ie. what serialization is meant for).

1.3.3 Caching Types

Caching consists of amain type Cache and two subtypes St ash and TaggedSt ash. The Cache typeis
merely a composite of the two.

The St ash consists of basic access methods: get and set , which function the same as the Met a type with
the only exception that set also acceptsan expi r es parameter.

In addition thereisalso adel et e method for explicitly removing akey, and af | ush method for deleting all
keys.

A basic example,

/1 set a key with a value and keep the value for at nost 60 minutes
$cache->set (' ny_key', 'my_value', 3600);

/1 you can omt expires to just use the default

$cache->set (' ny_key', 'ny_value');

/1 retrieve the val ue

$sone_var = $cache->get (' ny_key');

/1 by default if not set you will get null, you can configure this though
/1 the 3rd paraneter

$sonme_var = $cache->get (' sone_key', 'sone_default_val ue');

/1 explicitly remove a key

$cache->del et e(' nmy_key');

/1 purge the cache of all keys

$cache->f | ush();

Thetraitsfor TaggedSt ash will emulate the behaviour though the St ash interface if not explicitly
implemented.

1.3.4HTML Types

Themain HTML typeisHTM.Tag whichismainly aMet a, Render abl e composite with the added
attributest agnamne and t agbody. All the meta attributes directly translate to attributes on the tag.

So for example,

/]l create a tag

$tag = HTM.Tag: : i nstance()
->tagnane_is('p')
->tagbody_is('hello, world);

/1 add a class to the tag

$t ag- >add(' class', 'an');

/] add anot her cl ass

$t ag- >add(' cl ass', 'exanple');

Implementations will typically provide a metarenderer for cl ass by default so rendering the $t ag object
abovewouldyield<p cl ass="an exanpl e">hel | o worl d</ p>.

HTM_For minterface

The HTMLFor mtypeis used to facilitate form management. The interface involves primarily a series of
methods for creating fields, mainly f i el d and several aliases; but implementation wise they all might be
specialized. Fundamentally itisa St andar di zed, HTM.Tag.

With afew exceptions, all fields follow the same pattern of $| abel , $fi el dnanme. The$f i el dnanme
parameter is optional to allow for creating creating form elements that are meant to be script manipulated and
not submitted, or submitted directly; for example fields in an equation only serves the purpose of providing
input.

Exception to the field rule above are the following: hi dden and conposi t e. A hi dden fieldishidden so it
does not have alabel, only afield name. On the other hand a composite field is a amalgam of other fields so it
has alabel but does not have afield name.

To set up autocomplete you would use the aut oconpl et e method (which accepts an array of values) and to
retrieve a value you would use the autovalue method. Implementations will typically autopopulate aform if the
request had aform parameter with the form's name.

Errors are specified viaer r or s_ar e method. You can retrieve errorsfor agiven field viatheerr or s
method.

Formatting wise you have access to proxy methods that will setup how HTM_For nti el d will be configured.
These methods are addf i el dt enpl at e, addhi nt r ender er, adder r orr ender er. You aso have
access to getters on the specific configuration via: f i el dt enpl at e, hi nt r ender er and
errorrenderer.

The interface also issues several signing methods. These are used to specify how the a specific tag in html
belongs to the form. Typically these are used by HTMLFor nfi el d and on buttonsin practice; sinceit's easier
to write a button and sign it then to do it viathe HTMLTag interface (very little benefit to doing it viaHTM.Tag
aswell).

The signature methods are si gnat ur e, si gn and mar k. si gnat ur e retrieves araw signature for agiven
id, or return the form's base signature if no id is provided. si gn will generate a basic sinature, typically just
specifying the f or mattribute, while mar k will issue a signature and any additional relevant meta; for example
at abi ndex.

Thebasi cupl oader and nonupl oader are shorthand methods for configuring the form to handlefile
uploads; or not handle file uploads.

The form will typically include it's signature when it's created, to alow for autocomplete when a submission

fails with errors, but sometimes thisis not desirable such as when we have a GET based search form. To prevent
the form from including additional fields on it'sown, thedi sabl e_net ai nf o method can be used.

enabl e_net ai nf o can be used to switch it back.

HTM_For nFi el d interface

Like HTMLFor m aHTM_For n¥i el d isalsoaSt andar di zed, HTM_Tag. A HTM_For nFi el d consists

of severa parts. First areit's form related methods: f or m(getter and setter), and the operationsnoer r or s and
shower r or s. f or mdeals with which form we're handling and the two other methods toggle on or off the
display of errors passed down by the form to the field.

After it'sform related parts the field hasit's basic attribute handlers, related to it'sval ue and f i el dl abel .
val ue typicaly won't have a getter just a series of setters, with at least a default setter val ue_i s; thisisdue
to the potentially volatile nature of afield's value.

Finally afield has a template handling methods dealing with the following segments that compose a field:

hi nt s, which represent tips to the user one might attach to the field; such as what the minimum length
for auser's password is, or that their password can be any length, etc

[
error s, which represent alist of error messages. Some fields might consider only the top most error

relevant but the interface always expects alist to be what is processed

fi el drender which represents the core part of afield with everything else stripped away (for most
fields thiswould be the humble i nput tag).

The default methods defined by the interface for the above are: hi nt , hi nt s, adder r or (toinsert an error
message), adderrors (to insert many messages), err or s andf i el dr ender .

To defined the composition you would specify it viaaf i el dt enpl at e. The template will have the following
symbols replaced with the corresponding element of aform:

e : i d will bereplaced with thefield'sid

e .| abel will bereplaced with the field's |abel

e : fi el dwill bereplaced with thefield'sf i el dr ender

e : hi nt s will be replaced with the rendered version of the field's hints
e : errors will bereplaced with the rendered version of the field's hints

By default the template will simply be: f i el d for most implementations.

Also by default the hi nt r ender er ander r orr ender er used abovetoreplace: hints and: errors
will output an empty string.

1.3.5 Database Types

The following types are database related:
e SQLDat abase dealswith operations on a SQL based database
SQLSt at enent are abyproduct of accessto a SQL database
Schemat i ¢ isthe standard migration interface
Mar i onet t e isagenera purpose object based modeling class
Mar i onett eDri ver isadriver support for marionette
Mar i onett eMbdel isabaseinterface for single entity operations
Mari onett eCol | ecti on isabaseinterface for collection operations

Note: the Mar i onet t e system is aobject system designed specifically for APIs, other systems are supported.

SQLDat abase interface

The SQLDat abase interfaceis designed to very easily interface with PDO. To this extent you'll have a
prepare,quot e andl ast _i nsert ed_i d methods. The methods should be self explanatory, pr epar e
to create a new prepared statement, quot e to make a string safe for concatenationand | ast _i nserted_i d
isused for retrieving the id of the last entry.

In addition, the SQLDat abase interface requires the underlying database system to support transaction
(denoted by bei ng, conmi t, r ol | back). Transactions need to be usable when nested, so multiple begins,
commits and rollbacks should function as expected and not interfere with each other.

Note that thisis a SQL database interface and not meant to be used as a generic database interface. A generic
database interface is not provided because there are no generic features to place in such ainterface.

SQLSt at enent interface

The SQLSt at enrent interfaceisaPaged, Execut abl e, designed around compatibility with PDO.

For clarity the method syntax is very short and the interface forces alot of shorthands. While daunting most are
implemented into the trait so the explicitly required methods are actually very few unless the underlying system
that implements the interface can offer avery specialized and efficient interface of it's own that matches said
shorthands.

WEe'll avoid covering each and every method since there are many shorthands, but as a general readers guide:

e numstands for numeric and should be used with float, or integer values
e st r standsfor string and should be used with string values
e dat e standsfor date & time and should be used with date and time values

bool standsfor boolean and should be used with boolean values or values that can be translated to a
boolean

the setters are the above with no other prefix or suffix

e to mass assign you take theinitial types and add a s (ie. make them plural)

if you wish to bind you precede the method with bi nd (ie. bi ndnumor bi ndstr s)

stored procedure arguments are specified only though ar g and ar gs

To retrieveresultsyou usethef et ch_* methods. Sof et ch_obj ect for retrieving as an object,
fetch_entry for retrieving thefirst entry in aresult, andf et ch_al | for retrieving all the entries. If your
guery was a calculation such as SELECT COUNT(*) FROM sonet hi ng youcanusef et ch_cal c to get
the value (you can also pass a default).

Bothfetch_entry andf et ch_al | accept afieldformat parameter which is essentially alist of mutation
functions that are applied to the entry or entries after they are retrieved. For example you can specify that a
datatimefieldis' dat et i me' and theresult will have said field asa\ Dat eTi e object. Excessive use of
this functionality is not recommended, since you will find you often do not need said field and hence just wasted
processing time.

Schemat | ¢ Iinterface

The schematic interface is composed of actions that are performed to push the database schema up. Thereis no
support for dropping the database down, beyond uninstalling everything. The reason for thisis because
returning to a previous state should be implemented as simply a more advanced state that isidentical to the
desired earlier state. This ensures no datais lost because you are forced to convert the data back.

The operations specified by a schematic are:

e down, drop a database (removing columns or renaming tables should bein nove)
up, thisaction is designed for creating new tables

nove, thisaction is designed for any changes to tables

bi nd, any change related to constraints

bui | d, any operation that involves popul ating the database

Mar i onett e* interfaces

The Mar i onat e interface is designed as a base interface for Mar i onet t eMbdel and
Mari onett eCol | ecti on, among others.

TheMar i onett eCol | ecti on interfaceisdesigned for usein APIs. To facilitate this it provides methods
that correspond to a REST structure (ie. get , put , post , del et e).

TheMar i onet t eMbdel interfaceis designed for usein APIs. Asthe collection equivalent, it provides an API
based on REST.

Following the marionette design, the implementation of Mar i onet t e* classes should not contain any non-
REST operations.

Sincethe Mar i onet t e interfaces are designed to emulate REST, injecting custom methods for performing
tasksis not compatible, so any functionality should be implemented though drivers, viathe
Mar i onett eDri ver interface. The interface provides the following:

conpi | e, performed on POST, you should resolve input dependencies; operation will happen before
validation

| at econpi | e, similar to conpi | e only it is preformed after the the entry has been created; this
operation is designed for tasks that require the entry to have an id such as associating tags to an entry

conpi | ef i el ds, manipulatesfield list before database insertion happens

i nj ect, isperformed on GET and works by alterning the query execution plan before it's executed (ie.
joins, fields, postprocessors, €etc)

Several misc setters are also provided.

1.3.6 Application Types

Application types are used in application composition. Theseare Appl i cati on, Layer , Channel andto
some extent Cont r ol | er . Almost any application will be composed of a Appl i cat i on object managing
Layer objectsthat communicate though a Channel . Optionally you have Controllersin the terminating layer
doing work.

The layered design is meant to act as amodular execution plan. As an example, you can have execution plans
that have security features, or have http features or have html features built in, and you can also have execution
plans that don't even know what http is. The separation avoids complicated state |ogic and monolithic "kernel"
objects. Thisis highly beneficial since the layers may be juggled around and reused for different specialized

goals.

Asan aside, it is recommended you only use this approach if you can form a stack out of your execution. If the
execution is only composed of one terminal layer that is very unlikely to accept any other layer then you're
better of implementing the plan as asimple class that is self contained rather then use Application, Layer and so
on. The task runner Overlord is agood example of what not to implement as a Application stack.

1.3.7 View Types

The view types are Rawvi ew, Vi ewand Vi ewSt ash.

RawVi ewinterface

The RawVi ewinterface is the base view and designed for generic implementation such as views that are not
based on files.

To pass variables into the view you would use either bi nd for passing by reference or pass for passing the
value. Note: PHP is " copy-on-write" so thisis actually faster then passing by reference if you are not doing
some complex manipulation.

To get alist of al the variables you usethevi ewvar i abl es accessor. If you want to pass the variables of
one view to another, you can call i nher i t and passthe desired parent view.

To generate inline views you use the f r ame and endf r anme methods. Calling endf r anme will return a string.

Vi ewinterface

The Vi ewinterfaceismerely aFi | eBased Rawi ew.

Vi ewSt ash interface

A Vi ewSt ash can be used when processing relatively static content that requires alot of processing to
generate.

1.3.8 Theme Types

The theming system is defined by Theme objects that are used by TheneLoader sfor integrating themesin
therequest, TheneDr i ver sresponsible for handling theme specific requests and TheneVi ews responsible
for rendering themed view-based content.

Thene interface

A Thene objectisaChannel ed Met a object with various specialized accessors and setters, namely:

e t henenane_*/t henenane for retrieving and setting the theme name
e t henepat h_*/t henepat h for retrieving and setting the theme path
e t hemevi ewfor creating ThenmeVi ew objects based on the theme

ThenmeDr i ver interface

A TheneDri ver object isresponsible for non-view theme requests (eg. cssfiles, resourcefiles, etc). A theme
driversismerely aChannel ed Render abl e Reset abl e Recover abl e composite.

The point of theme driversisto allow for support of both different languages (mjolnir for example has support
for dart), but aso alternative handling and build patterns, ie. supporting a specific compiled language, or
resource files, etc.

ThenelLoader interface

A TheneLoader object isresponsible for the most part integrating TheneDr i ver sand other dependencies
into the request, as specified by the theme configuration.

A themeloader ismerely aMet a Channel ed Execut abl e composite.

ThenmeVi ewinterface

A TheneVi ewobjectisaChannel ed Vi ew(note: Vi ewisFi | eBased), with afew theme specific

additions.

e t henepat h_*/t henepat h for retrieving the theme path

e partial forretrieving asub view in the same theme

e resour ce for retrieving afile URL, aresource driver/loader is assumed to be provided by the
implementation (albeit not internally)

Implementations may provide additional utalitarian methods. As an example, mj ol ni r\ t herme\ TheneVi ew
providesaheadi ncl ude and f oot er i ncl ude for injecting code in the head of the page and right in the
last part of the body respectably for cases whereaHTML layer is used and hence the theme doesn't have direct
control over those parts with out said methods.

1.3.9 Miscellaneous Types

Miscellaneous types are specialized types that unlike generic types are not designed to be reused by other types.
They can have types based on them, but they are not created with the intention of having other types based on
them.

| nst ant 1 at abl e interface

I nst ant i at abl e isthe default interface for classes that have state. The mjolnir conventions require
avoiding using new and always producing objects though factories. This interface merely enforces the
convention on an object.

In general you should extend the class| nst ant i at abl e which implements thisinterface and enforces the
convention. Thisinterface is specifically designed for adapter patterns.

The interface merely providesan i nst ance method, which as per the conventions needs to alow for the
production of "default" or "neutral state”" objects (ie. al parameters must be optional).

Wi ter interface

A Wi ter isasit'snamed implies an interface designed for objects that write to a specific medium (eg. console
writer). The interface enforces conventions that allow for writing as well formatting.

Lang interface

The Lang interface is designed to facilitate internationalization. This interface is more of a convention because
the object in question in not designed to be passed around as a parameter to another object (in general).

The interface is amalgam of static and object based handling and various other tools that are required.
The following are the tools described by the interface (all static), others may be included in an implementation.

e targetlang_*/t arget | ang, for specifying the language to translate to
¢ i dl ang, underscore version of language tag

In modules, static (ie. global) handlers should be used:

[
t er misused when it's desirable to fallback on the key text if the trandlation is missing

key isused for retrieving a key based tranglation

| oad isahelper for loading structured directories in the language files

[}
fil eisahelperforloading afile asatrandation (eg. legal documents or just documents in general, that

are better transdlated as awhole, rather then in pieces)

In the application space the library/index system (object based) is recommended:

e addl i brary loadsalibrary into the tranglation index
¢ | dx loads aterm from the specific library

The indexed system is much cleaner and easier to use then the global system, but isill suited for use in modules
which are meant to be reusable.

The language configuration isleft to the implementation, but in general passing parameters to the trandation
needs to be supported to ensure grammar can be taken into account when translating, since otherwise grammar
rules need to be included in the code requesting the trandlation which either forces bad trand ations, convoluted
grammar rules, or prevents certain languages from getting tranglations due to their grammar rules not being
compatible with the rules provided.

PDFW 1 t er interface

The PDFW i t er interface provides a standard for converting html to PDF and distributing it, including stream.

Pager interface

The Pager interface like the Lang interface is more of a convention.

The interface provides some of the minimal functionality required for a pager. Implementations may provide
additional functionality.

Pr ot ocol interface

The Pr ot ocol interface like the Lang interface is more of a convention.

Aswith the Pager the interface merely ensures minimum functionality.

Puppet interface

The Puppet interface provides a convention for named objects. The point of having named objectsisto allow for
dynamic resolution between classes, removing redundant declarations.

Implementations typically should extend the Puppet class provided by the library. Thisinterfaceis provided
for adapter patterns.

The interface ensures a class has the following methods:

e si ngul ar, singular name

e pl ural, plural name

e dashsi ngul ar, dashed version of singular

e dashpl ur al , dashed version of plural

e codenane, underscore version of signular

e codegr oup, underscore version of plural

e camel si ngul ar, camelcase version of singular
e canel pl ur al , camelcase version of plural

Rel ayNode interface

A Rel ayNode isdesigned for universal routing.

Modules should aways use Rel ayNodes.

Task interface

Task objectsareaExecut abl e Meta Wit abl e composite.

Tasks are designed primarily for console use.

TaskRunner interface

A task runner object isaExecut abl e Wi t abl e composite.

URLRout e interface

URLRout e objects are used in specifying as the name implies URL based routes, since routes may match other
patterns that are not URL related.

Val | dat or Interface

A validator interfaceisaMat cher with methods for specifying fields and rules and the notion of errors.

Vi deoConvert er interface

The video converter interface is used as a convention for converting videos from one format to another with a
convert method.

1.4 Foundation Classes

1.5 Base Classes

1.6 Profiling

1.7HTML Utilities

1.8 Access System

1.9 Cache Classes

1.10 Backend System

H

11 Themes

1.12 Documentation

1.13 Database Classes

